Vivere con le radiazioni

par Giuseppe Filipponi
giovedì 16 agosto 2012

Nell’immaginario collettivo c’è la convinzione che qualunque tipo di radiazione uccide, provoca il cancro e mutazioni spaventose negli uomini, negli animali, nelle piante. Ma cosa sono in realtà le radiazioni emesse dai materiali radioattivi e quanto sono pericolose?

Queste radiazioni, dette ionizzanti, consistono in diversi tipi di particelle subatomiche: raggi gamma, raggi x, raggi beta (elettroni), neutroni, e particelle alfa. Queste particelle attraversano lo spazio ad alta velocità, alcune come i raggi cosmici di poco sotto la velocità della luce, penetrano nel corpo umano in profondità e danneggiano le cellule di cui il corpo è composto. Questo danneggiamento può causare un cancro o può causare difetti genetici nella successiva generazione di cellule.

Spiegando in questo modo gli effetti delle radiazioni sembra che il pericolo sia molto grave e che una persona colpita da una di queste particelle rischia parecchio. Questo è il modo in cui generalmente vengono descritte le radiazioni nucleari nei libri proposti dai movimenti antinucleari. Non si spiega, però, che ogni persona normalmente è colpita da tali particelle circa 15000 volte per ogni secondo della sua vita, e che è stato così per tutti gli uomini che ci hanno preceduto e che sarà cosi anche in futuro. Queste particelle, da cui siamo colpiti 40 mila miliardi (4 alla 1012) volte durante la vita provengono da fonti naturali. Lo sviluppo della tecnologia ha quindi aggiunto altre fonti come quelle dei raggi X per le diagnosi e le cure mediche, le TAC etc. Una tipica schermografia con i raggi X ci colpisce con le particelle che ci colpirebbero naturalmente in un anno di vita, una TAC addirittura con le particelle che ci colpirebbero in 10 anni.

Con tutte queste particelle che ci bombardano, come mai non moriamo subito di cancro?
Come vedremo la probabilità che una di queste particelle causi il cancro è molto bassa, circa 1 su 28 milioni di miliardi: 1/28.000.000.000.000.000.

Ci sono inoltre altri agenti fisici, chimici, e biologici che colpiscono le nostre cellule in modo più pericoloso, è stimato che solo 1% dei casi di cancro mortale sono causati dai 40 milioni di miliardi di particelle che ci colpiscono, gli altri 99% dei casi sono dovuti ad altri agenti, chimici, fisici e biologici che attaccano le cellule.

Come puntualizzano gli esponenti delle campagne antinucleari, ogni particelle che ci colpisce in più rispetto al fondo naturale, aumenta il rischio di cancro, è bene, quindi evitare tali radiazioni e non costruire centrali nucleari. Le persone sono indotte a pensare che le radiazioni siano assolutamente da evitare. Prendendoli in parola possiamo dire che ci sarebbero molti modi più efficaci per evitare le radiazioni. E' possibile ridurre del 10% le radiazioni che ci colpiscono vivendo in case di legno invece che di cemento e mattoni i quali contengono materiali radioattivi come Uranio, Torio e Potassio. Volendo, ognuno potrebbe costruire uno schermo di piombo intorno al proprio letto, riducendo così del 20% le radiazioni che lo colpiscono durante la notte, oppure evitare i raggi X dei dentisti e le TAC negli ospedali, evitare viaggi in aereo o le vacanze in montagna e tante alte cose. La vita è piena di rischi, ogni volta che prendiamo un boccone di cibo, possiamo scatenare un processo chimico che porta al cancro, eppure non possiamo fare a meno di mangiare. Ogni volta che camminiamo o corriamo rischiamo un incidente ma ciò non ci impedisce di camminare o correre. Ugualmente l'attitudine corretta sarebbe quella di non preoccuparci di piccole dosi di radiazioni oltre il fondo naturale.

La misura del rischio

Non è possibile avere una comprensione del problema delle radiazioni, se non lo si affronta da un punto di vista quantitativo. Se facciamo un discorso solo qualitativo, allora concludiamo che il nucleare non va bene, ma anche il carbone e il petrolio non vanno bene perchè producono un inquinamento che uccide le persone, il gas peggio ancora perchè oltre che produrre inquinamento, uccide le persone con le esplosioni. Occorre misurare questi rischi e la scienza ci aiuta a farlo. Solo dopo possiamo trarre le conclusioni più adeguate per le nostre scelte.

L'unità di misura del Sistema Internazionale (SI) per la radiazione è il Siviert (Sv), è però ancora in uso il rem, 100 rem = 1Sv. Un mrem (un millessimo di rem) = un centomillesimo di Sv, di esposizione equivale, per un corpo medio, ad essere colpiti da 7 miliardi di particelle standard, il Sv tiene conto anche del tipo di particella e della massa della persona. Per esempio un adulto e un piccolo bambino che stanno vicini in un campo di radiazioni, ricevono lo stesso rischio e quindi la stessa dose in mSv, anche se l'adulto riceve molte più particelle del bambino a causa della sua maggiore massa. In genere, si parla di basse dosi di radiazioni fino 10 rem= 0,1Sv. In tutti gli incidenti che si sono avuti e di cui si sente parlare spesso alla televisione a causa del malfunzionamento di impianti nucleari, oppure per il materiale radioattivo fuoriuscito dai contenitori durante il trasporto, sorgenti radioattive lasciate incustodite etc., non si sono mai avute rilasci di radiazioni nell'ambiente circostante maggiori di 5-10 millirem, in genere si rimane intorno a 1 millirem. Nell'incidente di Three Mile Island del 1979 , il più grande incidente avvenuto in una centrale nucleare nel mondo occidentale, l'esposizione dell'area circostante fu di 1.2 mrem.

Quanto è pericolosa una simile radiazione? Come sappiamo la radiazione naturale di fondo ci colpisce dall'alto (raggi cosmici) con 20 mrem all'anno, dal basso con i materiali radioattivi sempre presenti nel terreno: Uranio, Potassio, Torio, in tutto 20 mrem all'anno anno, da tutte le altre parti con la radioattività sempre presente nei materiali usati per le costruzioni, 10 millirem all'anno, dall'interno del nostro stesso corpo, Potassio-40 e Carbonio-14, 25 millirem all'anno, il totale da 85 -100 millirem all'anno. Inoltre possiamo aggiungere 80 mrem, in media, per analisi e terapie mediche e 180 mrem, in media, dalle radiazioni del gas radon presente nelle case. 

Il totale per ogni abitante può arrivare facilmente a più di 360 mrem all'anno in aree di montagna dove la concentrazione di Uranio e di Torio è alta e l'altezza comporta una maggiore esposizione a radiazioni cosmiche. In alcune località, la radiazione di fondo raggiunge valori molto alti come nelle zone ricche di sorgenti termali e minerali. Nella città inglese di Bath, le acque termali hanno un contenuto 1730 pCi di Radon per litro e sono considerate altamente benefiche per molti disturbi. Tuttavia, l'EPA (US Enverimental protection Agency) decretò che occorre prendere provvedimenti quando il contenuto di Radon nell'acqua potabile supera 4 pCi / litro. Gli antichi Romani, che non conoscevano l’EPA, costruirono a Bath un tempio nell'anno 42 DC, dedicato alla dea della sapienza e la salute e nel 1742 gli inglesi vi costruirono il Royal National Hospital per le malattie reumatiche. Anche oggi è alto il numero persone che vanno a Bath e in altri centri termali, malgrado le acque abbiamo una radioattività molto elevata, per beneficiare dei loro effetti terapeutici, mentre secondo gli argomenti degli ecologisti queste acque dovrebbero costituire un grave pericolo. Poiché il fondo di radioattività naturale in Piazza S. Pietro a Roma (700 mren/anno) è più elevato di quello medio esistente, oggi, nell'area interdetta di raggio 30 km che circonda la centrale nucleare di Chernobyl, secondo gli ambientalisti la basilica di S. Pietro potrebbe essere ritenuta più pericolosa di Chernobyl, il problema è che il selciato di Piazza S. Pietro è costruito con cubetti di porfido, roccia vulcanica che contiene torio, elemento naturalmente radioattivo. Come si deduce facilmente dall'incidente, tanto pubblicizzato, di Three Mile Island, le radiazioni assorbite dalla popolazione nell'area intorno alla centrale nucleare sono state quelle che normalmente si ricevano in 4-5 giorni dal fondo naturale dell'ambiente in cui viviamo. La radiazione di 1 rem è quanto si riceve osservando per un anno la TV due ore al giorno.

Poiché ogni volta che si presentano questi dati quantitativi gli ambientalisti rispondono che ogni dose extra rispetto a quella naturale può causare un danno. Noi rispondiamo che non è vero, per due ragioni.
La prima è che i numeri prima riportati sulla radiazione naturale, sono una media nazionale, negli USA in Colorado e negli Stati delle montagne rocciose (Wyoming, New Mexico, Utah), con un sottosuolo ricco di Uranio e maggiormente esposti per l'altezza ai raggi cosmici, si ha una radiazione di fondo maggiore del 15 % rispetto a stati come la Florida dove l'altitudine è minima e il terreno è povero di sostanze radioattive. In Italia la radioattività di fondo di Napoli è 3 volte quella di Milano e quella di Roma è il doppio di Milano. Essere esposti alle radiazioni dell'incidente di Three Mile Island sarebbe l'equivalente, quindi ad un viaggio di pochi giorni da Milano a Roma o Napoli. In ogni caso milioni di persone vivono normalmente a Napoli e la percentuale di casi di cancro in questa città è nella media nazionale. Nel Colorado addirittura i casi di cancro sono il 35% sotto la media nazionale. Una chiara indicazione che le basse dosi di radiazioni non sono un importante fattore per il rischio di cancro. Escludendo il Radon [4] si stima che solo l'1% dei casi di cancro dipende dalle radiazioni ionizzanti che normalmente ci colpiscono.

La seconda ragione è che il corpo umano possiede meccanismi di difesa biologica molto potenti contro i danni che provocano le basse dosi di radiazioni. L’attività del sistema immunitario e altri sistemi biologici sono costantemente attivati e riparano il DNA delle cellule che come abbiamo visto sono colpite in ogni istante da 15000 particelle al secondo. Come vedremo molti studi e molte ricerche sono state fatte in questo campo che dimostrano che basse dosi di radiazioni (sotto i 0,1 SV) attivano il sistema immunologico rendendolo più efficace nella difesa del corpo umano.

Una controversia è nata all’inizio degli anni ‘80 negli Stati Uniti su queste ricerche. Scienziati facenti parte delle organizzazioni antinucleari come H. Caldicott, J. W. Gofman, E. J. Sternglass ed altri sostennero l’idea della cosiddetta linear no-threshold theory, cioè che anche a basse dosi di radiazioni si aveva l’induzione di tumori e malformazioni genetiche, un rischio calcolabile con una estrapolazione lineare rispetto al rischio dovuto alle alte dosi di radiazioni (sopra i 0,1 Sv), un rischio quindi minore ma sempre importante secondo i sostenitori di questa impostazione.

Lo scontro non accademico sulla "linear no-threshold theory”

I principali esponenti della comunità scientifica legati al Comitty for Nuclear Responsability
( www.ratical.org/radiation/CNR ) e alla Union of Concerned Scientists (UCS www.ucsusa.org ) negli USA, organizzazioni che si oppongono al nucleare, sostennero all’inizio degli anni ’80 la teoria che la soglia di radiazioni ionizzanti, al di sotto della quale si supponeva non vi fossero rischi per chi vi era esposto, non esisteva. Secondo questa impostazione per quanto piccola fosse l’esposizione non c’è mai rischio zero: se 1 Gy (100 Rad) di esposizione da un rischio R, allora 0,01 Gy di esposizione da un rischio R/100 e successivamente 0,00001Gy da un rischio R/10000 e cosi via. Questa è chiamata la “linear no-threshold theory”(LNT). La comunità scientifica, in primis quella USA, non ha mai accettato questa impostazione. Nel 2001 i 600 scienziati della Helth Physic Society, la principale associazione americana degli operatori di radiologica, fecero un documento in cui si affermava che “sotto i 10 rad il rischio di cancro era troppo basso da essere osservato”.

C’è da rilevare che non si tratta di una semplice disputa accademica. La teoria del LNT è stata usata negli ultimi 20 anni dai movimenti ambientalisti e antinucleari per terrorizzare le popolazioni di tutto il mondo. Il suo funzionamento è semplice, ad ogni minima dose di radiazione assorbita in aggiunta al fondo naturale viene associata una quantità extra di casi di cancro e di morti previsti in futuro nella popolazione esposta. Se poi la quantità extra di radiazione assorbita raddoppia essa produrrà una quantità di casi di cancro e di morti doppia, e così è pure per la stessa dose assorbita da una popolazione doppia. Si può immaginare il forte impatto che simili dati hanno sulla popolazione, specialmente se sono forniti da autorità governative e usati da stampa e TV alla ricerca di scoop giornalistici. Ogni piccola radiazione, anche minore delle radiazioni di fondo a cui normalmente si è esposti diventa una "bomba atomica sporca", vengono previsti per gli anni futuri migliaia di casi di cancro e morti. Da considerare poi che anche piccolissime dosi di radiazioni, assorbite però da una grande quantità di popolazione portano ugualmente a calcolare un gigantesco numero di casi. Un strumento di propaganda fortissimo nelle mani dei movimenti ambientalisti di cui si è fatto pieno uso nei media e nella propaganda in generale dei movimenti antinucleari. 

Si ricordi a questo proposito il rapporto di Greenpace del 2006, in questo rapporto, ripreso dai media di tutto il mondo, a causa dell'incidente di Cernobyl venivano previsti 6 milioni di casi mortali di cancro in più nelle popolazioni dei paesi esposti (praticamente tutta l'Europa).

Uno dei primi a formulare la linear no-threshold theory (LNT) fu il Prof Jhon Gofman, docente di Biologia Molecolare e Cellulare all'Università di Berkely in California e fondatore della Divisione di Ricerche Biomediche del Livermore National Laboratory, e Presidente, dal 1971, del Comitty for Nuclear Responsability di San Fracisco un’associazione contro il nucleare. I libri del Prof. Gofman, che è morto nel 2007, sull’incidente di Three Myle Island (1979) e di Chenobyl (1986) ne hanno fatto una figura guida del movimento antinucleare negli Stati Uniti e nel mondo.

Inizialmente il Dipartment of Energy (DOE) degli USA rifiutò questa concezione, non perchè, dice Gofman in un’intervista, il DOE fosse convito del contrario, ma perchè era "sconveniente". Nel 2001 il National Council on Radiation Protection and Measurements, un istituto promosso dal Congresso degli Stati Uniti abbracciò la teoria del LNT e, nel 2004, l’United States National Research Council un organo della National Academy of Sciences USA la appoggiò.

Come abbiamo prima riferito, malgrado queste prese di posizioni la teoria del "linear no-threshold theory", non è mai stata accettata pienamente dalla comunità scientifica internazionale. Infatti sul National Association of Sciences Biological Effects of Ionizing Radiation Report degli USA, NAS BEIR VII del 2006 si legge "In conclusione possiamo dire che ci sono forti dubbi sulla validità della linear no-threshold theory" nel valutare il rischio di cancro derivato da esposizioni a dosi < di 100 mSv e anche per dosi < di 10 mSv.

La LNT può essere usata come uno strumento pratico per fissare le regole di radioprotezione solo per dosi sopra i 10 mSv, ma non è basata su chiari concetti di scientifici di biologia, non può essere usata senza precauzioni estrapolando i rischi per dosi < di 10 mSv, specialmente per formulare direttive sugli operatori di radiologia come è stato fatto nelle direttive europee 9 - 43". Anche l'American Nuclear Society prese posizione nel 2001 affermando "che non vi erano sufficienti evidenze scientifiche per affermare che la teoria della LNT fosse corretta". Anche la Health Physics Society affermò ufficialmente nel gennaio 1996 che "secondo le attuali conoscenze sulle radiazioni si raccomanda di non fare stime quantitative sui rischi dell'esposizione alle radiazioni per dosi individuali inferiori ai 5 rem annuali o 10 rem per tutto il periodo di vita in aggiunta alla radiazioni di fondo assorbibile. I rischi in questo caso sono strettamente qualitativi con la possibilità che gli effetti siano zero. C'è attualmente una evidenza incontestabile che sotto i 10 rem di radiazioni annuali i rischi siano troppo bassi da essere apprezzati".

In Francia, l'Académie des Sciences e l'Académie nationale de Médecine pubblicarono nel 2005 un documento in cui si rifiutava decisamente la teoria della LNT, in Francia in tutte le direttive governative si è stabilita una soglia minima di radiazioni ionizzanti che, come dicono, “azzera i rischi”. Diversi scienziati di fama hanno scritto articoli pubblicati dalle maggiori riviste scientifiche contro la teoria del LNT. Ne citiamo alcuni come il Prof. John Sasso e il Dr Micheal Rapacholi della World Health Organization e il Prof. Bernard Cohen dell'Università di Pittsburgh. Il Prof. L.B. Choen ha spiegato nei suoi innumerevoli scritti che il corpo umano non funziona secondo la “linear no-threshold theory”. Secondo Cohen è sbagliata l’assunzione di base per cui, anche una singola particella di radiazione ionizzante che colpisce una singola molecola di DNA nel nucleo di una singola cellula può iniziare un cancro e tale rischio può essere apprezzato e calcolato. Secondo Cohen la teoria LNT non considera che esistono meccanismi di difesa del corpo umano che prevengono questi eventi iniziali che portano al cancro. Anzi questi meccanismi di difesa sono proprio stimolati da basse dosi di radiazioni.


Leggi l'articolo completo e i commenti